The daily rhythm in plasma glucagon concentrations in the rat is modulated by the biological clock and by feeding behavior.

نویسندگان

  • Marieke Ruiter
  • Susanne E La Fleur
  • Caroline van Heijningen
  • Jan van der Vliet
  • Andries Kalsbeek
  • Ruud M Buijs
چکیده

Plasma glucose concentrations display a daily rhythm generated by the hypothalamic biological clock, located in the suprachiasmatic nucleus (SCN). How the SCN orchestrates this rhythm is unknown. Because glucagon stimulates hepatic glucose production, we hypothesized that if glucagon has a daily rhythm, then it may be responsible for the glucose rhythm. From hourly blood samples, we determined daily glucagon concentrations for intact and SCN-lesioned rats. Intact ad libitum-fed rats showed a clear daily glucagon rhythm, and fasting resulted in an even more pronounced rhythm. It is interesting that a decrease in glucagon concentrations, instead of the expected increase, occurred already shortly after food removal. Toward the start of the active period, a peak in glucagon levels occurred, with concentrations similar to those measured in ad libitum-fed rats. SCN lesions abolished rhythmicity in plasma glucagon profiles. Scheduled-fed rats showed meal-induced glucagon peaks but also a daily rhythm in basal premeal glucagon concentrations. Plasma glucose concentrations of ad libitum-and scheduled-fed rats, however, were similar. In conclusion, feeding and the biological clock control 24-h plasma glucagon concentrations. In fed rats, glucagon is not responsible for the daily glucose rhythm. During fasting, however, glucagon may contribute to energy mobilization when the activity period starts.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Circadian Rhythm on Physical and physiological Performance of Military forces- Narrative Review

The 2017 Nobel Prize for medicine was awarded the biological clock Scientist, which shows the importance of this phenomenon in the life of living organisms. The circadian Rhythm (CR) through the created internal “clock” is responsible for regulating the daily performance of different organs of the body. The central body clock is the key factor to creating and maintaining this CR. External optic...

متن کامل

Effect of an Antagonist of Vasoactive Intestinal Polypeptide on Biological Rhythm of Rest Activity in the Rat

Abstract Vasoactive Intestinal Polypeptide (VIP), has been found in different neurotransmitter systems and exists in various nerve tracts in the brain. Potential role of this peptide in physiological processes such as regulation of sleep and wakefulness, and biological rhythms has been confirmed in several reports. In the present research effects of intracerebroventricular (ICV) injection of a...

متن کامل

THE EFFECTS OF GLUCAGON, INSULIN AND S TEROID HORMONES ON PHOSPHATIDATE PHOSPHOHYDROLASE ACTIVITY IN RAT LIVERS

The effects of steroid hormones, glucagon and insulin on rat liver phosphatidate phosphohydrolase (PAP) activity were studied both in vitro and in vivo. Incubation of rat hepatocytes with each hormone showed that dehydroepiandrosterone (DHEA), progesterone and testosterone increase PAP activity by 44.6, 37 and 36.9%, respectively. Estradiol, however, decreased enzyme activity by 13.6% under...

متن کامل

The Effect of Maternal High-Fat Feeding on Energy Homeostasis in Stressed Adult Male Rat Offspring

Introduction: In the present study the effect of chronic maternal high-fat diet consumption on energy homeostasis and glucose metabolism in response to chronic stress was investigated in adult male rats. Materials and Methods: Female rats were divided into two groups of normal and high fat diets. Each group received their diet from 3 weeks before pregnancy until the end of lactation. At 8 weeks...

متن کامل

Circadian Control of the Daily Plasma Glucose Rhythm: An Interplay of GABA and Glutamate

The mammalian biological clock, located in the hypothalamic suprachiasmatic nuclei (SCN), imposes its temporal structure on the organism via neural and endocrine outputs. To further investigate SCN control of the autonomic nervous system we focused in the present study on the daily rhythm in plasma glucose concentrations. The hypothalamic paraventricular nucleus (PVN) is an important target are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Diabetes

دوره 52 7  شماره 

صفحات  -

تاریخ انتشار 2003